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ABSTRACT

Very little use is made of multiple processors available on current supercomputers (com-

puters with a theoretical peak performance capability equal to 100 MFLOPS or more) in

computational aerodynamics to significantly improve turnaround time. The productivity of

a computer user is direcLly related to this turnaround time. In a timesharing environment,

the improvement in this speed is achieved when multiple processors are used efficiently to

execute an algorithm. We apply the concept of multiple instructions and multiple data

(MIMD) through multit_sking via a strategy which requires relatively minor modifications

to an existing code fl_r a single processor. Essentially, this approach maps the available

memory to multiple processors, exploiting the C-Fortran-Unix interface. The existing single

processor code is mapp,'d without the need for developing a new algorithm. The proce-

dure for building a code utilizing this approach is automated with the Unix stream editor.

As a demonstration of tlis approach, a Multiple Processor Multiple Grid (MPMG) code is

developed. It is capable of using nine processors, and can be easily extended to a larger

number of processors. TMs code solves the three-dimensional, Reynolds averaged, thin-layer

and slender-layer Navier--Stokes equations with an implicit, approximately factored and di-

agonalized method. Th," solver is applied to a generic oblique-wing aircraft problem on a

four processor Cray-2 computer, using one process for data management and non-parallel

computations and three processes for pseudo-tilne advance on three different grid systems.

These grid systems are cverlapped. A tricubic interpolation scheme is developed to increase

the accuracy of the grid coupling. For the oblique-wing aircraft problem, a speedup of two

in elapsed (turnaround) time is observed in a saturated timesharing environment.

INTRODUCTION

Current supercomputer architectures employ a few high-performance processors to pro-

vide a significant increas_' in speed {defined as throughput) over the speed of single-processor



supercomputersof the past. With massively parallel supercomputer architectures, the speed

of supercomputers may be increased by at most two orders of magnitude. Specifically, a

factor of 100 from a highly parallel computer architecture can be expected. This limitation

is explained by Amdahl's law 1, which imposes a stiff penalty for the last few percent of non-

parallelizable code in an otherwise parallefizable program. (Note that Buzbee and Sharp 2

have credited Ware s for this model.) This model fails to account for additional instructions

required when multiprocessing an otherwise single processor group of instructions. Taking

into account this increase in instructions for multiprocessing, the Buzbee and Sharp model

suggests that the maximum speedup is less than the nunlber of processors, even if the com-

putation under consideration can be completely put, into a parallel form. In the future,

supercomputers with between 16 and 64 processors are likely to be available. Yet. there

has been very little use made of multiple processors available on current supercomputers

in computational aerodynamics to significantly enhance the productivity of the user. The

objective of the presented research is to map an existing algorithm onto a multiprocessor

supercolnputer to demonstrate the advantages of using multiple processors.

The motivation of this research is as follows. In computational aerodynamics, the need

to study flow fields around more realistic and complex three dimensional geometries has led

to a few promising computational techniques, all of which make a substantial demand on

supercomputing resources, namely cpu time and memory. The COlnputing power required

is roughly proportional to the number of grid points (or finite volumes or finite elements)

into which the complete flow field is discretized. In a timesharing environment, jobs will be

resident for long times, as measured by the wall clock. Total wall-clock (elapsed) time is

proportional to the total number of grid points; this time can be substantially reduced by

using a number of processors simultaneously.

We will now offer some perspective on various techniques which have been used to par-

allelize computer codes. First, applications on computers other than supercomputers are

considered, and then those on supercomputers are discussed.

Liewer et al. 4 have implemented a plasma particle-in-cell simulation code on a Hyper-

cube 64 processor machine by using each processor to calculate, for a single particle, the

updated particle positions, velocities, and particle contributions to charge and current den-

sity. Comparisons with Cray X-MP/48 single processor times for the most computation

intensive section of the code indicate a speedup in the elapsed time by a factor of two. Much

effort is also being applied at this time to parallelize flow solving methods onto massively

parallel architectures, such as the Connection Machine. Lin s has implemented a particle-

in-cell simulation of wave particle interactions using the massively parallel processor (MPP)

which consists of 16,384 processors. Tuccillo 6 has used the Connection Machine (CM-2)

for numerical weather prediction. Jespersen and Levit 7 have used the Connection Machine

for a two-dimensional finite-difference algorithm solving the thin-layer Navier-Stokes equa-

tions. On such computers, however, uniquely system-specific instructions and algorithms

are required to achieve speeds comparable to that possible when multiple processors of sii-

percomputers are utilized. Creating these codes thus requires a considerable investment

in programming time. Codes typically implemented on vector supercomputers need to be

programmatieally redesigned.



On supercomputerssuchas the Cray Y-MP and the Cray-2, multitasking, microtask-
ing, and autotasking are available. Multitasking is a mechanismfor multiprocessingat a
subroutine level. The inq_lementationfrom Fortran is via suchcalls as TSKSTART and
TSKWAIT. With thesecalls,parallel executionof Fortran subroutinesmay be initiated and
synchronized.This impletaentationof multiprocessingis wellsuited for MIMD architectures.
Microtasking is a mechanisnlfor multiprocessingof DO loops. It parallelizesthe executionof
DO loops most typicnlly immediately outsidethe innermost vectorizing loops. It is invoked
with compiledirectivessuchasDO GLOBAL in the Fortran source.The precompiler "pre-
mult" will thenadd appropriateparallelizingsystemcalls to the Fortran source.Autotasking
is essentiallymicrotasking that is automatically performedby the (',ray dependencyanalyzer
FPP. It is activated by a compileswitch and is thus the simplest multiprocessingoption to
use. Autotasking is well s16tedfor SIMD-appropriate algorithms (singleinstruction, multiple
data).

Smith and Miller s have calculated galactic collisions by multitasking the motion of four

groups of stars (each gro_tl_ of which is arranged in 256 blocks, with each block containing

1024 stars) onto four Cray-2 processors. The motion of stars in time is influenced by a

potential field, which nit:st be updated between tintesteps based on the latest position of

particles. Taylor and B;tuschlicher 9'1° have multitasked the work required for generation

of full configuration interaction wave functions in computational chemistry problems by

subdividing over inner pr,_,ducts large matrix multiplies onto four Cray-2 processors. Andrich

et al H have multitasked a general circulation model of the ocean by applying vertical and

horizontal operators by 'slab" (plane) on separate processors of a Cray-2. Chevrin 12 has

simultaneously multitas_ed and microtasked the NCAR Community Climate Model on a

Cray X-MP/48 and has achieved speedups (decrease of elapsed time) of up to 3.7. In this

case, vertical slabs within the model constituted independent computational elements and

were multitasked at the subroutine level onto separate processors. It seems there are no

archived publications using multiprocessing for computational aerodynamics.

There are two approaches to speedup on supercomputers: global (coarse-grain) par-

allelization and local (nediuln and fine-grain) parallelization. The latter is the approach

t_ken in the references just cited. In the present work, we have achieved a speedup using

a global coarse-grain imi,lementation and making use of the available MIMD architectures,

with basically standard _dgorithms. The reason for not using microtasking and autotasking

is explained below.

Microtasking and autotasking are not efficient fl)r any but the most ideal algorithms on

the Cray Y-MP and Cray-2 architectures, because the synchronization between processes

under microtasking results in the loss of "synchronization wait" time. For real world algo-

rithms, this results in additional cpu time consumed. This cpu penalty is highly system-load

dependent and seems to be proportional to this load. Microtasked processes waiting and idle

at a synchronization point continue to accumulate user cpu time.

The productivity of the user depends not only on the effÉciency of the code he or she

develops but also on the efficiency of the computer resources he or she is going to use. The

concept of MIMD thro, tgh multiprocessing allows efficient use of these resources. This is



explained asfollows. First, considera worst case. If a singleprocessjob accessesall of the
availablecentral memory, all processorsexceptone will be idle since there is no memory
available for jobs queuedfor tile other processors.This causesconsiderableinefficiencyin
systemresourcesand in throughput. A possiblesolution is to let.a user requestm./p of the

total memory resources, where m is the number of processors requested by the user and p

is the total number of processors available. Second, multiprocessing allows completion of

jobs sooner, freeing the system for use by other users and providing a considerable benefit

in terms of enhanced productivity to the user colnmunity at large. Third, the shortening of

residence time for a job reduces vulnerability to system crashes.

In the following sections, the multitasking implementation is first discussed, and a gen-

eral outline of the method is given. A simple example of multitasking is then provided to

give some basis for the subsequent detailed look at the multitasking implementation in the

MPMG code. A discussion is included of some relevant memory management coding de-

tails. The Unix stream editor, which is used to automate code editing tasks, is then briefly

discussed. Next follows a description of the governing equations, followed by a development

of the tricubic interpolation scheme used for grid coupling, and discussions of numerical
experiments.

MULTITASKING APPROACH

Multitasking on a supercomputer with multiple processors requires that a computational

task be subdivided into independent tasks, which are then run concurrently. This technique

results in a decrease in wall clock time for tasks so subdivided, but obviously not in a decrease

in the total nun,bet of floating point operations required. Nevertheless, the gain in terms of
productivity will still be considerable for the user.

There are many possible strategies for multitasking fluid flow solvers, but here we will

describe only the MPMG solver implementation, and the requirements that led to its par-

titular multitasking strategy. This strategy is different from the strategies discussed in the

Introduction. Although the multitasking approach is discussed below in the context of the

Cray-2 computer, it is applicable in principle to other such supercomputers.

The Cray-2 permits multitasking via two different software mechanisms. Since the Cray-

2 operating system, Unicos, is a Unix implementation, processes may be multitasked out of

the C programming language, using the system calls "fork", "exec", "wait", etc. These

multitasking mechanisms, however, are relatively low level and lack the required spectrum

of capabilities such as simple mechanisms for synchronization of tasks. The Cray-2-Unicos-

Fortran implementation, on the other hand, provides a Multitasking Library, callable from

Fortran, which offers a wide spectrum of multitasking capabilities. It guarantees that, when

available, separate processors will run separate tasks (processes). One still competes with

other users for processors, but tasks will benefit from true concurrency. Therefore, multi-

processing is done via the Fortran multitasking library calls.

Various requirements for MPMG dictate aspects of the design of this code. The MPMG

code must be able to access very large amounts of the Cray-2 memory. As work space of



approximately38words pergrid nodeis required,and sincethis codemay be usedfor up to
9 grid systems,with an averageof, possibly,one-third-million nodeseach,it shouldbe able
to successfullyrequest 125million words of memory,or half of the entire Cray-2 memory.
Therefore,a consistentand rehablemechanismfor memoryallocation is to force the loader
to give the main program all of the work spacememoryand then to allocatesubsetsof this
memory to the separatemultitasked solvers.

Flexibility in memoryallocation mechanismsand the ability to developdata typeswhich
would mimic and map to :_uchFortran memory types as COMMONblocks or subroutine pa-

rameter lists, made the use of the C programming language attractive for the main driver.

Data types (structures) in C also are well suited to parallel programnfing techniques, as will

be demonstrated. Additionally, C has the ability to call functions (or Fortran subroutines)

by their addresses. This makes it possible to invoke the routines being multitasked by cy-

cling through an array of function addresses. The advantage to such an approach is that

multitasked subroutines ar_'_"invoked by grid number, i.e., indicially. Such an approach is not

possible in Fortran.

The decision to multitask the solver at the grid level (one flow solver copy for each grid),

rather than within tile grid level (filler grain level) is influenced by several factors. First, the

choice of multitasking tile solver at the grid level seemed a "natural" organizational level.

Data and work spaces rclated to a given grid could easily be kept distinct from those of other

grids. Second, multiple embedded grid schemes ordinarily advance a single independent time

step on each constituent grid, and then update all dependencies between grids (coupling tile

grids explicitly, by interpc,lation). Third, the purpose of parallel processing is to speed up

the execution of individual programs. The same program with different inputs and different

grids can be run on a nuHber of processes equal to the number of grids plus one. Fourth,

multitasking should be transparent to the user so that any modifications to the physics

and to the numerics can be easily made. This at once makes multitasking at the grid level

simpler. However, when grid sizes differ in the number of nodes, multitasking results in the

completion of a time step on a smaller grid before that of the larger. The advantage gained

by multitasking is thus correspondingly diminished.

On the Cray-2, bindirg of C and Fortran object codes is simple and robust: the codes

are simply individually cotupiled and then linked together. The first cardinal rule that must

be observed when passing data between C and Fortran routines is that the C argument list

contain only pointers (addresses) to the respective Fortran variables. This is normally true

when the data being passed is in an array, in which case, placing the C, array name in the

argument list suffices to n:ake the array's address visible to the called Fortran routine. (This

is standard in Fortran-to-Fortran calls.) When a scalar variable is being passed from C to

Fortran, a pointer variable containing the address of the scalar must be placed in the C

argument list (called by address). On the Fortran side, the actual scalar variable is placed

in the parameter list and subsequently receives the scalar value at its address.

The second cardinal rule which must be observed when binding C and Fortra, n codes

on the Cray-2 is that. all names of Fortran subroutines called from C and all names of C

functions called from Fortran lnust be capitalized, since the C,ray-2 Fortran compiler only



really recognizescapital letters in symbol names.

MULTIPROCESSING MULTIPLE GRID CODE

The code is divided into three main computational units. The first is a C main driver, the

second is tile multitaskable Fortran solvers, one tor each grid, and the third is a small group

of Fortran utility routines (Fig. 1). Tile Fortran utility routines include the interpolation

and update procedures, some memory allocation procedures, the interpolation file read-in

routine, etc.

The C main is preceded by a section of data structure declarations. These roughly fall

into two types: those that map to Fortran COMMON blocks, and those that map to Fortran

subroutine argument lists. In the main program, data initialization is followed by the ac-

tual time step loop, including grid interpolation and dependency update procedures, and

the multitasking of the flow solvers for a time step. Following the time step loop is the

termination sequence, including output of the restart file and user requested flow data.

The multitaskable flow solvers are each a collection of Fortran routines based on the

core flow solver. When multitasking an existing Fortran code, there are two possible choices:

either a single copy of the code can be multitasked m times, or m unique copies of the code

can be produced and individually multitasked. Both of these choices have advantages and

disadvantages, and these will be compared. The authors chose the latter method, which is

made silnpler, in part, by using the Unix strealn editor to produce m unique flow solver

copies, r

MULTITASKING BASICS AND A SIMPLE EXAMPLE

The Cray-2 multitasking library is exceptionally easy to use, especially when called

entirely from Fortran routines. The basic principles for utilizing this library are explained

with an example. Appendix A is a small sample code "MItEAT" which solves the steady

state 2-D heat equation by successive-over-relaxation on a grid of 100 by 200. This grid is

partitioned into two grids of 100 by 100 each. The outer boundary is set to 200 degrees,

the interior to 0 degrees at the outset. The intermediate boundary separating the right and

left domains starts at 0 degrees. The routine "SEIDEL" is multitasked, one copy for the

left domain, and one for the right. Given the latest boundary conditions for these domains,

the parallel execution of the two copies of SEIDEL solves both domains simultaneously for

a steady state solution (that is, until the iteration-to-iteration change drops below 0.0001

degrees) and then return to the main program. The centerline boundary between the two

domains is then updated by averaging temperatures immediately on its left and right. This

process is repeated and eventually, the entire domain converges to 200 degrees.

Note first the integer arrays PROC1 and PROC2. These are required by the system multi-

tasking routines and are used by them to identify the individual processes. The initialization

of their first element is a necessary forluality as is the external declaration of the routine

SEIDEL. Next, note the call to the multitasking library routine TSKTLrNE. This indicates to



MPMG FUNCTIONAL STRUCTURE
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Fig. 1 Multiprocessing multiple grids.



the system that the ma.xinmm number of CPU's on which tasks may simultaneously com-

pute is 4. In general, this is the natural choice for the four processor Cray-2. Finally, the

routine SEXDEL is multitasked twice with the library calls to TSKSTART, which contains the

task identifier, and the name of the routine being multitasked, followed by its arguments.

The m,ltitasking invocations are followed by two calls to TSKWAIT, which synchronizes the

completion of the tasks, that is, guarantees that no further processing will occur until both

tasks have completed.

The work space for the grid is the single dimensional array A(20000) in the main program.

The starting element for the left domain A(1) and the starting element for the right domain

A(9901) are passed down to the two tasks, whereupon the work space is redimensioned to

be a two-dimensional array of appropriate size (e.g., idiln x jdim/2). This permits each task

to have a unique portion of work space, and thus there is no chance that values in the grid

space will be overwritten inadvertently. Scalars and dimensioned arrays that are local to

the nxultitasked routine are unique; there is no risk of their being overwritten. There are,

however, no common blocks in the multitasked routine. The multitasking library does not

provide a mechanism by which common data in multitasked routines is unique: scalars and

arrays in commons are available to all copies of the routine which are executing. A declared

data type TASK COMMON is available in the multitasking library. This COMMON is protected

so that only one copy of a routine can access it at a time. But. upon completion of work by

that routine, another multitasked copy may now access the very same memory, thus possibly

overwriting values.

MPMG MULTITASKING AND MEMORY ACCESS MECHANISMS

In order to overcome common block memory access uniqueness problems which occur when

multitasking a subroutine containing common blocks, a technique different from the above

(single copy of routine multitasked) was used in the MPMG code. As previously indicated,

the base flow solver was replicated to form a unique copy for each grid. Subroutine names

had to be made unique, of course, and common block haines were also made unique within

a given copy of the solver. These modifications were performed by the Unix "sed" stream

editor script that builds the separate copies of the code. For example,

COMMON/BASE/A,B,C

])ecolnes

COMMON/BASE1/A,B,C

everywhere in solver no. 1 and

COMMON/BASE2/A,B,C

for solver no. 2, and so on. The variables A,B,C, etc. are now unique to the individual copy

of the numbered routine-common block combination in which they appear.

At the initialization of the MPMG program, all common blocks are made available to

the C main code. This is done by calling a special set of Fortran utility routines FXTERN1,

8



FXTERN2,etc., one for each flow solver copy. In eachof thesewere the (uniquely named)
connnonblocks appropriaLefor the solver. (SeeAppendix B, for a sample.) The address
of the start of eachcommon block is then passedback to the (._Imain code by ca.lling the

C function CXTERN. CXTERN places these addresses in the equivalent (indicially referenced

by mesh number) pointer to-structure element. (See Appendix C.) This has the effect of

placing a "template", which is the structure, over (the memory starting at the address of

the first variable in) each common block. The Fortran common blocks are now available to

ttle C main via the arrays of pointers-to-structures.

As previously in(licatcd, large amounts of Cray-2 memory are requested for flow solver

work spaces. This memory is used for storing the grids, the flow data, intern,ediate calcu-

lations, etc. During the initialization process, the C, main program calls a Fortran utility

routine named FALLDC (Appendix D). As in the above mechanisms, FALLOC itself calls a

C function CMNADDRS, and passes ALLMEM, which is the address of the block of nlemory re-

quested in the common block WORKMEM.In CMNADDRS, the address of this (generally very

large) block of memory is passed to a globally declared pointer-to-float, thus making the

memory available to the C main. Subsequently, memory is allocated to work spaces by a

simple C utility function (Appendix E), which sets the work space pointers to appropriate

addresses within this contiguous memory block.

A convenient method for passing down to Fortran routines argument lists containing the

addresses of the work spa_:es for a given grid is to build arrays of structures whose fields are

pointers. For example, given

SUBROUTINE GRID (JMAX,KMAX,LMAX,X,Y,Z)

DIMENSION X(J_AX,KMAX,LMAX),

& Y(JHAX,KMAX,LMAX),

Z(JMAX,KMAX,LMAX)

RETURN

END

then an appropriate array of structures for mapping to this parameter list would be

struct s_grid

{
int *p_jmax;

int *p_kmax;

int *p_imax;

float *p_x;

float *p_y;

float *p z;

} s_grid[NUMBER_OF_GRIDS];

There is one such struct tre for each grid. Tile pointers in this structure may be initialized



following the memory allocation procedure. This is done by the routine init_structs:

void init_structs (mesh_number)

int mesh_number ;

{
s_grid [mesh/lumber] .p.jmax = p_jmax [mesh/lumber] ;

s_grid [mesh/lumber] .p/_max = p_kmax [mesh/lumber] ;

s_grid [mesh/lumber] .p_Imax = p_Imax [mesh/lumber] ;

s_grid [mesh_number] .p_x = p_x [mesh_number] ;

s_grid [meshmumber] .p_y = p_y [mesh_number] ;

s grid [mesh_number] .p_z = p_z [mesh/lumber] ;

}

Thereafter, Fortran subroutines may be called from C in a very compact fashion. Referring

to the above Fortran subroutine GRID, the C statenmnt

GRID (s_grid[mesh/lumber]) ;

has the effect of placing all fields contained in the "mesh_nunlber" element of tile structure

s_grid onto the subroutine argument call list, and since these individual fields are really

addresses, the called Fortran subroutine receives only the appropriate addresses, as required.

Lastly, it is important to ensure Fortran functions may be called by address froin C. If

the C array grid [NUMBER_0F_GRIDS] is of type array of pointers-to-functions returIfing void,

and if its in(livid,a[ elements have been loaded with the addresses of the Fortran subroutines

GRID1, GRID2, and so on, then the statement

_or (me sh/lumber=O ;

mesh_numb er <NUMBEROF_GRID S ;

mesh_number++ )

(*grid[mesh/lumber]) (s_grid [mesh_number] ) ;

will invoke these routines successively, passing to them the addresses for appropriate pa-

rameters which are being kept in the structure s_grid. Note that loading the addresses of

Fortran subroutines into a i)ointer-to-function can be accomplished by first declaring the

Fortran subroutines to be of type void, as follows:

void GRIDI ();

void GRID2 ();

The p_'inter-to-function returning void is declared by

void (*grid[NUbIBER_OF_GRIDS]) () ;

Finally, these pointers are given the Fortran subroutine addresses with

10



grid[O] = GF_IDI;

grid[l] = GFLID2;

Multitasking these rou'Snes from C, followed by task completion synchronization, is now

simple:

for_all_mesh TSKSTART

for_all_mesh TSKWAIT

(proc [mesh_number] ,

,grid [mesh_number]

,s_grid [mesh_number] );

(proc [mesh] );

where, for convenience, for_all_mesh has been previously defined by:

#define for_.all_mesh \

for (mesh_number=O; \

mesh_number<NUMBER_OF_GRIDS;

mesh_number++).

AUTOMATING LARGE SCALE EDITING WITH SED

The MPMG code building process merits some attention. Changes to the code required

by the number of grid.', the grid dimensions, etc., and also algorithmic changes to the flow

solver core are not actually made to the base code, but rather, to a Unix shell script and

Unix "sed" stream editoP 3 script. This makes version control and testing of algorithmic

changes and enhancen_ents easier to monitor. Modifications, which may be quite global in

nature, can be enabled or disabled simply by enabling or disabling portions of the controlling

sed script.

The Unix stream ,.ditor sed is a very convenient tool for automating the MPMG text

manipulating needs. _ed takes advantage of the "regular expression" capabilities of Unix.

These versatile wild c;trds are without equal for generalizing text editing commands. Sed

also accepts string varLables passed into it, which may then be incorporated into the target

text produced. Sed's ability to memorize portions of a line of text which match specified

patterns or patterns specified with regular expressions makes it tremendously powerful.

Sed is employed to automate the task of producing unique copies of the base flow solver.

Sed also makes all als;orithmic changes to the flow solver, for example, those required by

the interpolation mechanisms, and those necessary to account for differing grid sizes, etc.

Thus, it is really never necessary to change the base flow solver, but instead, changes are

incorporated into the _ed script and the Unix shell script that drives sed.

GOVERNING EQUATIONS

The governing equations are the thin-layer approximation to the Navier-Stokes equations,

11



which areexpressedas

where
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When appropriate these thin-layer equations are replaced by the slender-layer Navier-Stokes

equations, in which viscous terms are retained in two directions.

NUMERICAL PROCEDURE

The numerical procedure is discussed in two parts, the first of which outlines the im-

plicit procedure used to solve the governing equations, and the second of which explains the

methodology for coupling tim solutions on the various grid systems. The forlner is outlined

briefly, as the procedure is relatively well known. The latter is discussed in detail, as the

procedure for applying tricubic interpolation to overset curvilinear grid schemes is new.

hnplieit Schetne

The governing equations are solved with an implicit approximately factored scheme 14,

following linearization in time. This scheme is modified to include nonlinear artificial dissi-

pation terms suggested by Jameson et al. is and to accommodate a hole recognition mech-

anism required for overlapping grid systems. This mechanisln is implemented with is for

12



"iblanking."la Consequently,the numerical schemeis the following for the thin-layer equa-
tions:

T_(I + ibtth_A_" + ib73_j)

N_,( I + ibh6,A_ + ibD,,k )

N, lC(I + ibhbcA_ + ibD 0

-ibh Re -_ 6¢j-1 _,_, )T(' AQ"

=: ibh(6eE" + 6,,if'" + 6¢(__" - Re-a6¢,_q n )

+ib(73_j + 73,1k + 73_z)0 n

The nonlinear artificial dissipation operator, 73, is

where A and V are forward and backward difference operators, respectively, crj are scaling

coefficients obtained fr:ml the spectral radii of the flux Jacobians, and ej are the second

and fourth order dissipation coefficients. The A's are the eigenvalue matrices of the flux

Jacobians, the T's are the eigenvector matrices, and N_, = T_-IT, I. The 6's are the spatial

difference operators applied to the eigenvalue lnatrices, h is the timestep, and Ji's are the

Jacobians of the coordinate transformation. The above equation describes the complete

differencing scheme at. an interior point of the grids. Boundary points, in the far field and at

solid walls, and at interior hole boundaries require special care to insure that fourth order

operators in the above expression are converted automatically to one sided or second order

differences. These strategies are automated by the use of the iblank switch ib at each node

to signal whether to solve for the dependent wriables at that. node. Note that when two

grids overlap, the presence of a solid body associated with one of the grids creates a hole in

the interior of the other grid.

Trieubic Patch Interpolation Scheme

Linear interpolatioa mechanisms have been successful and easy to use for coupling the

solutions on different grid systems. Their chief advantages are that they require a slnall

number of data points (bi-linear requires data at the four corners of a two-dimensional cell,

and trilinear requires data at the 8 corners of a three-dimensional cell), thus making their

formulation relatively __imple, and they have the interesting (and in some cases desirable)

property that the valu,_ of a function at a linearly-interpolated point can never exceed the

value at any surroundiI_g corner point. This is, essentially, a monotonicity condition, and is a

safe choice in the presence of shocks. The chief disadvantage of linear interpolation schemes

is that they are only first-order accurate, and thus are a poor choice of interpolant when

describing smooth but nonlinear functions. Cubic interpolation, by contrast, preserves the

curvature present in the interpoh_ted functions and is thus more accurate.

The problem of interpolation may be stated as follows: Given a function (typically flow

data) defined in some domain at the nodes of a curvilinear coordinate system, find the func-

tion value at a given arbitrary point or set. of points in this domain. Interpolation may be

13



performedin the physical domainin whichthe function valuesareat non-equispaced(x, y, z)

locations of a curvilinear coordinate system. However, interpolation ill this domain is ineffi-

cient in terms of storage and computational effort compared with that ilk the computational

domain (_,7/, (,'). In this domain the function va.lues are known at the equispaced knots of

a rectilinear grid, which allows a simplification in the interpolation procedure. All that. is

necessary is to transform the given (x,y,z) set of points to their (_,71,_) equivalents.

The procedure used to find the ((, 71, [) interpolation point is as follows: a multivariate

Newton-Raphson iterative procedure is used to invert the given (.v,y,z) position to the

corresponding (4., _1, _) position. This also requires an interpolation procedure to obtain the

initial guess and subsequent improved guesses.

[ntcvpolants zn curt,_lincar coordinate systems

First, the cell containing the point to interpolate is found via a search algorithm. Then

for convenience the cell is translated so that one corner is located at the origin of ((,71, (_)

space. 3'hat. is, calling the point we seek to interpolate (x*,y*,z*), (_*,,1",(,*) will be an

element of the unit cube in ((, r/, _') space.

Next, the following iterative procedure is used. Since (x, y, z) is available at all (_, 'l, (,')

node points in computational space, form the three position function interpolants

y -_r((,,1, ¢)

Then, invert this set of equations at the given (x*,y*, z*) for the respective (_*,7/*,_*) using

multivariate (three-dimensional) Newton-Raphson iteration. Starting with an initial guess

(C, '£, C),

solve tile above system for (_*, 71", _*) using the iteration

,_7_ '_+1 : =

-1

Axn]
Ay"

Az n

with

Au"/ := y" -
ZXz-j :" z(_-,,p, ¢-) j

whicll will be used to produce

l71',+1 := q'_ + AT/"+1

_'_+' L_" zxC+'

14



Assuminga 1-1mapping, the inverseof the dacobianexists16'17and soit is possibleto solve
for the (A_, A_I, A_') vector. In general (assuming a "close enough" initial guess) the iteration

will converge quadratically _s'19 to the desired ({',7/*, _*), i.e., we will have ((*,_/*, _*) such

tt, at

9" = |
j

Note that the assumption of a 1-1 mapping is violated in practice typically at topological

singularities (such as polac axes of ellipsoidal grids) of the coordinate transformation. At

such points, the Jacobian will be (theoretically) zero, but more likely (computationally)

extremely small. If the Jz.cobian is not identically zero, it. will frequently still be possible

to continue the iteration to a successfid conclusion. More information may be determined

by finding the singular value decomposition (SVD: J = UDV _ where D = diag(A, O, ...0) =

diag(A_, ...Ak, 0, ..., 0), A; b,_-qng the singular values of J, k = rank(J)) of the Jacobian matrix.

Singular values of zero will reveal, in a stable manner, the rank of the Jacobian matrix _°.

These may indicate that. in at least one of the coordinate directions _, 71, or _, a change in

coordinate does not produce any change in .v, y, or z. This will be true, for example, if

the current position is on a singular line. The SVD may be then followed by singular value

damping or singular value' truncation 21, followed by construction of the "pseudo-inverse"

(J+ = VA -1Ut). The effect of small or zero singular values is to make the iteration unstable

since it is the reciprocals of these singular values that are used in the formation of the pseudo-

inverse. Singular value damping or truncation methods serve to stabilize the iteration by

limiting the effect of these small or zero singular values. We will show later how the elements

of the required Jacobian matrix may be obtained.

The Tricubic Interpolation

In the above procedrre for finding the ((,q,() position of a given (_,y,z) point, no

mention was made of whi::h particular interpolation method will be used. Any interpolation

mechanism could be inserted. We have in fact started with trilinear interpolation coefli-

cients (the ((°, 71", (*) offs_qs) and have used them as the initial guess for a Newton-Raphson

iteration using tricubic iilterpolation for the base interpolants.

The four coemcients of a one-dimensional cubic polynomial may be uniquely specified

given two adjacent funct!on values and the two derivatives of the function at those points.

These two derivatives ar_ themselves calculated from discrete data by central differences,

and thus four function ,,alues are required. In three dimensions, 43 function values are

required to produce a co_nbination of fi4 values of the function, its first derivatives, second,

and third mixed partial derivatives. These in turn are placed in a 4 × 4 x 4 tensor which is

then multiplied by the F lree respective cubic blending polynomials, one each for x, y, and

z. These cubic blending polynomials are themselves functions of the tricubic interpolation

coeflicients, that is, the ((*,71",_*) offsets. A locally defined cubic polynomial interpolant

approximation to the di.;crete function is thus produced. Note that this interpolant is C 1

continuous across adjacellt cells.
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For eachcell in 3-D containing an interpolation point, sixty-four flmction values will be

required. That is, if tile bottom, left-hand, forward corner of the cell ill question has index

(i,j,k), then valuesat all points {i-l,i,i+l,i+2}×{j-l,j,j+l,j+2}x{k-l,k,k+l,k+2}

are used. These are differenced as needed: first partials at. each corner of the interpolation

cell (24), second mixed partials at each corner (24), and third lnixed partials at each corner

(8). These 56 partial derivatives, along with tlle 8 corner function values are placed into a

4 x 4 × 4 tensor B according to the arrangement of Stanton el. a122:

U 1 =

f(0,0,0) f(0, 1,0) f,(0, 0, 0) L,(0, 1,0)
f(1,0, 0) f(1, 1,0) f,,(1,0, 0) f.(1, 1, 0)

f_(O,O,O) f((O,l,O) .fo,(O, O, O) f0,(0,1,0)

f..(0,0,0) f((l,l,0) 10,(1,0,0) fo,(1,1,0)

B 2 =

B 3 =

f(O,O, 1) f(O,l,1) f,,(0, 0, 1)

f(1,0, 1) f(l, 1, 1) f,,(1,O, 1)

f..(0,0,1) f((0,1,1) f..,,,(0, 0,1)
f_(1,0,1) f_(1,1,1) fen(i,0,1)

f¢(O,O,O) f¢(0,1,0) f,,,¢(O, O, O)

f_(1,O,O) f_(1,1,O) fnx(1,0, O)

f_,((0, 0, 0) f_,¢(0, 1,0) fo,,¢(0, 0,0)

f,,(;(1,0, 0) f..,_:(l, 1,0) f.L,,,(;(1, 0, 0)

f,,(0, 1, 1)

f,,(1, 1, l)

f_,.(0, 1, 1)

f_,,,(1, 1, 1)

f,,,C(0,1,0) ]

f,,((1, 1,0) [

f¢,.,¢(0, 1, O) [
fo,,dl, 1, O)J

Ire(0,0,1) f¢(0,1,1) f.,¢(0,0,1) f,,z(0,1,1)]

B4=[f<(1,O, 1) f((1,1,1) f,,z(1, 0,1) f.,_(1,1,1) 1
/fe,((O,O, 1)f(x(O, 1, 1) fe,,,,c(O,O, 1) fo,,¢(O, 1, 1)1
Ire,c(1, O, 1) f,,((1, 1, 1) fe,,,¢(1, O, 1) fob,C(1, 1, 1)J

where f is the function being interpolated, evaluated at the indicated corner of the unit
cube.

The cubic blending polynomials are given by

altO) --2( 3-3( 2+1
_2(_) = 2(3 + 3_2

_(() =_-2_2+

-,(_) (_ - (_

The function f interpolant can now be given by

f(_,71,¢) _ _ °:l(_)CYm(rl)°zn(¢)Bt.._
/l?_q,?t

We may now see that the partial derivatives of the curvilinear coordinate system position

functions X, Y, and Z, which are required in the Jacobian matrix for the Newton-Raphson

iteration, may be easily formed. First, analytically differentiate the expression immediately

above with respect to _, r/, and _', and then evaluate the resulting partials for the position

functions X, Y, and Z at the current, (_,,1, ¢) estimate within the Newton-Raphson process.
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That is, tile partial derivativesof the position function interpolants are interrogated at the
current (_, 'l, (,') Newton-Raphson estimate.

Note that interpolation of discontinuities requires the use of trilinear rather than tricubic

interpolation to insure monotonic behavior of the interpolated values.

NUMERICAL EXPERIMENTS

The Reynolds averaged, Navier-Stokes equations with the Baldwin-Lomax turbulel_ce

model are solved to determine flows past a generic oblique-wing aircraft (Fig. 2). Two alld

three overlapping grid systems are used, respectively, for a wing-fuselage combination attd

a wing-pedestal-fuselag(' combination. The flow is at a Mach nuntber of 1.4, a Reynolds

number of 4,000,000, a.n_l an angle of attack of 1,l°. The wing is positioned as follows: sweep

angle = 65°; bank angle = 5° , with the leading tip banked down; pitched down by 7.8°;

wing pivot point is at 3!1.0% of the mid-chord; the wing attachment point is at. 60.0% of the

length of the fuselage fr.,m the nose. The sohttions are communicated from one grid system

to the neighboring one by itlterpolation. The tricubic interpolation scheme is applied fi)r

two overlapping grids; and the trilinear interpolation scheme is used for three grids. The

wing and the fitselage fowfiel(ls are computed using the thin-layer approximation; and the

pedestal flowfield is comt)uted using the slender-layer approximation.

The complexity of computations and flow fields is indicated by presenting sample results

(Figs. 3-6). The effect of trilinear and tricubic interpolations on convergence to a steady

stal.e is (liscussed, and a COml)arison of the accuracy of the two methods demonstrates that

the latter is more accurate. Timing results for the MPMG code are then presented to

demonstrate the spee(h p achieved in the elapsed (wall-clock) time by multiprocessing.

Tricubic Patch Application

Figures 3 and 4, re.'q)ectively, show the overlapping wing and fuselage grid systems and

surface flow patterns. Solutions are obtained at each time step separately on these grid

systems, and are comnlunicated between them by the tricubic interpolation scheme. The

smoothness in the solution across the boundary of one grid system into another is higher

for the tricubic interpolation than for the trilinear. This smoothness affects the convergence

to steady state. With the trilinear scheme, the residues of the discrete governing equations

cannot be reduced beyond about, four orders of magnitude, but with the tricubic scheme,

these residues are reduced more than six orders of magnitude. In these experiments all other

parameters were kept the same.

The L1, L2, and Lo, norms of error and relative error for a known nonlinear function are

less for the tricubic than for the trilinear interpola|.ion. Numerous tests were devised to test

and compare the acculacy of the tricul)ic and trilinear interpolation schemes. All of these

tests resulted in the same conclusion. We describe here a test which is particularly revealing.

First, a solution was obtained for the fuselage grid (95 × 83 × 50) alone using the MPMG

code. The resulting grt_(lients were strong at the nose and tail of the fuselage. At. each point

in the grid, the solul, ioll was interpolated from alternate surrounding points. Both trilinear
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and tricubic interpolation were used in this lnanner and the results compared to the original

solution at this point. (Note that the values used in this test are Q variables, not scaled by

transformation J acobian.) Virtually every measure of error is smMler for the tricubic scheme

than for the trilinear scheme (Appendix G). This is, of course, no surprise. In general, the

error is reduced by between one third and one half. The errors showed no particular corre-

lation with position in the _rid. The tricubic interpolaliou, therefore, can be advantageous

for complex computational aerodynamics problems requiring multiple grids. The obvious

disadvantage of using tricub_c interpolation is that it requires roughly eight times more coln-

t, utational effort than the trilinear interpolation. Multiprocessing the interpolations between

different grid systems would reduce the elapsed time for such computations.

MPMG Application

The MPMG code is aplflied to solve flow past the generic oblique-wing aircraft. The

flow conditions are those considered above. Three overlapping grid systems are used, one

for each of the following parts of the aircraft.: wing (389,500 grid-points), fuselage (229,H_0

grid-points), and pedestal, the wing support between the wing and the fuselage (223,860

grid-points). The governing equations are solved concurrently on these separate grids by

multitasking as three concurrent processes. The results are then updated on the overlapping

grid regions by interpolation in the fourth process. Some details of the grid systems are

shown in Fig. 5. A sample .,f the result is presented in Fig. 6 showing particle traces around

the pedestal.

The averaged cpu secoi,ds per minute from numerous MPMG runs of a three-grid prob-

h'm, both in single-process mode (no multitasking) and multi-process mode (the multitask-

able portion of the computation proceeding as three parallel processes), are presented in

Table 1. The average effettive speedup is 2.1. This factor is consistent with total elapsed

time trials made for this c_,se. When considering these results, it is important to remember

that the three-processor values include some time spent executing in a serial only mode on a

single processor. Appendix F gives timings of each of these runs. Variations in timing values

are due to variations in machine load conditions. The timing information is presented in the

form of cpu seconds consmned per wall-clock (elapsed) nlinute.

Processes CPU seconds/minute

1 34

3 71
L_

Table 1. Increase in cpu with multiprocessmg

Under the following conditions, the number of cpu seconds per minute which a job will

obtain while multitasking is roughly equal to the number of processes requested times the

number of seconds per minute which a single process job will get. First, the machine is

saturated, tha.t is, the number of processes exceeds the number of processors. This implies

that there is no idle compute time. Second, all experiments performed, regardless of the

number of processes, are Tun at the same priority. Third, the total number of all user jobs
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is considerably larger than the number of processes on which the flow code is multitasked.

In order to estimate the fraction of the flow solver code which was multitaskable, the

above averaged timing results were applied in the following manner. The code is divided into

two portions. On the first portion, computation proceeds serially, that is, ill one process only.

On the second portion, computation proceeds in parallel, in this case, in three concurrent

processes. It is the extent .,f this section which is to be determined.

Consider a simple exan_ple in which 75% of the code is parallelizable onto three processes.

For this job, the 25% nonp.'_rallelizable portion will complete in 25% of the total elapsed time

required for the entire job to run as a single process. The para.llelizable 75%, run on three

processes, will complete th:'ee time more rapidly than it would have if run as a single process.

Therefore, the total parall,'lizable version will complete in 50% (that is, 25% plus one third

of 75%) of the elapsed tim_, required h,r the nonparallelizable version. This is Amdahl's law.

In the present case, we know the elapsed times for the single processor and three processor

flow code computations (subject to some statistical uncertainty), and from these we seek

the fraction of the code which is serially executed only (the fraction which is effectively

multitasked will then be 1 minus tile serial fraction) This is the inverse of Amdahl's law:

f-
(m- 1)"

tlere f is the fraction of the code that cannot be multitasked, m is the number of concurrent

processes in the multitasl_ed part, and r is the ratio of the multitasked to nonmultitasked

elapsed times.

This formula assumes that the m multitaskable processes all perform the same amount

of work and thus, when started simultaneously, will all finish at the same time. This is not

necessarily the case for the MPMG code, and, ill fact, is not true for the test cases described

in this report, where the Emmunt of work in the multitaskable processes is proportional to

the different grid sizes, i.e., the number of points in each grid. To find the fraction of code

which is executed serially only, we therefore use the following modified formula:

m

i=1
fs ,n- 1

si
i=l

where v is, as above, the ratio of multitasked to serial-only elapsed times, and the si's are

the sizes or relative sizes of the multitaskable pieces of work, with the ruth being the largest.

Therefore, based on the n:easured elapsed times (Table 1) and setting s; equal to the various

grid sizes, we conclude th_A about 3.1% of the total computation was executed in serial nmde

only. We have used here :ior the ratio v of multitasked to nonmultitasked elapsed times the

ratio of the values given in 'Fable 1 for cpu seconds per minute of elapsed time, which is

1/2.1 = 0.48. Note that the overhead for multitasking in the MPMG code was found to be

negligible.
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One can estimate the decreaseill multitasking efficiencydue to the differencesin grid
sizes.By using Alndahl's law with the assumptionthat f = 3.1% we find that the resultant

ideal ratio of multita.ske:l to serial elapsed times will be about 0.35, rather than the value of

0.48 achieved with the ttiffering mesh sizes.

Multitasking at the relatively coarse grain level in the MPMG code was found to be quite

efficient on the Cray-2 computer, in that the overhead incurred by the multitasking library

was very small. By con!:rast, the autotasking facility (automatic Cray microtasking library

invocation) provided on the Cray-2 and Cray Y-MP computers is relatively inefficient, based

on the first author's experiments with autotasking 3-D Navier-Stokes, implicit flow solvers.

Those experiments showed that, though elapsed time was decreased, a penalty in total cpu

time consumed of up to ['orty percent was incurred. This penMty varies depending on system

load, job priority, and ot her factors and is caused by details in the atttotasking/microtasking

library implementation.

CONCLUDING REMARKS

1) Although multiprocessing is essential for significantly ilnproving the productivity

of computational aerodynamicists, it is hardly ever used in computational aerodynamics.

2) Judicious use of multiprocessing allows efficient use of computer-system resources.

3) An approach is presented and demonstrated that multitasks existing supercom-

purer Fortran programs with relative ease using "C" for the main program.

4) A significant i ml)rovement in turnaround time is demonstrated and the theoretical

basis for it is explained.

5) Etficient use of future multiheaded supercomputers will typically require multi-

processing flow solvers.

6) Tricubic intel polations can reduce error in grid coupling mechanisms compared to

trilinear interpol_ttions.
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APPENDIX A

MULTITASKING IN THE ABSENCE OF COMMON BLOCKS

C

PROGRAM MHEAT

EXTERNAL SEIDEL

INTEGER PROCI(2),

DIMENSION A(20000)

PROC2(2)

1000

9000

C

C

CALL TSKTUNE

PROCl(1) = 2

PROC2(1) = 2

IDIM = 100

JDIM = 200

CALL INITIA

ITCNT = 0

ALOWDT = .0001

DUMYLG = 100000.

IL2R = 0

IR2L = I

CONTINUE

CALL TSKSTART

&

CALL

CALL

CALL

CALL

CALL

CALL

(6HMAXCPU,4)

(A,IDIM,JDIM)

(PROCI,SEIDEL,IDIM,JDIM/2,ACHNGI,ALOWDT,

ITSI,IR2L,A(1))

TSKSTART (PR0C2,SEIDEL,IDIM,JDIM/2+I,ACHNG2,ALOWDT,

ITS2,IL2R,A(9901))

TSKWAIT (PROC2)

TSKWAIT (PR0Cl)

AVCNTR (IDIM,A(9801))

SEIDEL (IDIM,JDIM/2,ACHNG1,DUMYLG,IDUM,IR2L,A(1))

SEIDEL (IDIM,JDIM/2+I,ACHNG2,DUMYLG,IDUM,IL2R,A(9901))

AMOST = AMAXI(ACHNGI,ACHNG2)

ITCNT = ITCNT + i

WRITE(*,9000) ITCNT,ITSI,ACHNGI,ITS2,ACHNG2

FORMAT(IX,I5,2(SX,IS,2X,EI3.7))

IF (AMOST .GT. ALOWDT) GO T0 IO00

CALL 0UTPRN (A,IDIM,JDIM)

END

SUBROUTINE SEIDEL (IDIM,JDIM,TCHANG,ALOWDT,ITS,IDIREC,T)

DIMENSION T(IDIM,JDIM)

DATA OMEGA / 1.93 /

IF (IDIREC .EQ. O) THEN
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JEND

JINC

ENDIF

ITS = 0

I000 CONTINUE

C

JSTART = 2

JEND = JDIM-I

JINC = I

ELSE

JSTART = JDIM-I

= 2

= -I

100

TCHANG = -IE40

DO i00 J=JSTART,JEND,JINC

D0 100 I=2,1DIM-I

TPREV = T(I,J)

T(I:J) = (T(I-I,J) + T(I+I,J) + T(I,J-I) + T(I,J+I))/4.

T(I J) = TPREV + 0MEGA*(T(I,J) - TPREV)

TDIFF = ABS(TPREV-T(I,J))

IF (TDIFF .GT. TCHANG) THEN

TCHANG = TDIFF

ICHNG = I

3CHNG = J

TMPCHG = T(I,J)

END[F

CONTINUE

ITS = ITS + I

IF (TCHANG .GT. ALOWDT) G0 TO i000

RETURN

END

SUBROUTINE AVCNTR (IDIM,T)

DIMENSION T(IDIM,3)

C

DO I00 I=2,1DIM-I

T(I,2) = (T(I,I)+T(I,3))/2.

i00 CONTINUE

RETURN

END

SUBROUTINE INITIA (T,IDIM,JDIM)

DIMENSION T(IDIM,JDIM)

D0 50 J=_,JDIM-I

D0 50 I=_:,IDIM-I
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C

C

T(I,J) = O.
50 CONTINUE

DO I00 I=I,IDIM

T(I,I) : 200.

T(I,JDIM) = 200.

I00 CONTINUE

D0 200 J=2,JDIM-I

T(1,J) : 200.

T(IDIM,J) = 200.

200 C0NTINUE

RETURN

END

SUBROUTINE 0UTPRN (A,IDIM,JDIM)

DIMENSION A(IDIM,JDIM)

D0 100 I=1,100

WRITE(*,*) I,A(I,50),A(I,lOO),A(I,150)

100 CONTINUE

RETURN

END

APPENDIX B

MAKING FORTRAN COMMON BLOCK ADDRESSES AVAILABLE

TO MAIN C PROGRAM

SUBROUTINE FXTERNI

C0MMON/C0MBLKI/ A,B,C

C0MMON/COMBLK2/ X(1000),Y(IOO0),Z(IO00)

COMMON/C0MBLK3/ M(20),Q,R,S

MESHNUM = 1

CALL CXTERN

RETURN

END

(MESHNUM,A,X,M)

APPENDIX C

OBTAINING ADDRESSES OF FORTRAN COMMON BLOCKS IN C

struct s_comblkl
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/,, global declarations */

{
float a ;

float b ;

float c ;

struct s_comblkl ,ps_comblkl[NUMBER_OF_GRIDS] ;

/,k Pointer to common comblkl */

/_ NUMBER_OF_GRIDS defined as */

/_k total number of grids */

struct s_comblk2

{
float x[iO00] ;

float y[iO00] ;

float z[iO00] ;

);

struct s_comblk2 *ps_comblk2[NUMBER-OF-GRIDS] ;

struct s_comblk3

{
int m ['i0];

float q ;

float r ;

float s ;

};

struct s_comblk3 *ps_comblk3[NUMBER-OF-GRIDS] ;

void CXTERN (meshmumber

,plocal_comblkl

,plocal_comblk2

,plocal_omblk3)

/_ Note: mesh_number is pointer to int */

/_ since it is passed from Fortran routine */

/* and therefore must be an address; */

/* same for all these pointers */

int *mesh_number;

int *plocal_comblkl;

int *plocal_comblk2;

int *plocal_comblk3;

{
extern struct s_comblkl

extern struct s_comblk2

•ps_comblkl [] ;

•ps_comblk2 [] ;
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extern struct s_comblk3 *ps_comblk3[] ;

/* typecast and assign address to */

/* approp pointers to structures */

/* These pointers to structures are */

/* global and thus available to main */

ps_comblkl[*mesh/%umber] = (struct s_comblkl *) plocal_comblkl;

ps_comblk2 [*mesh/%tuuber] = (struct s_comblk2 *) plocal_comblk2;

ps_comblk3[*mesh_number] = (struct s_comblk3 *) plocal_comblk3;

APPENDIX D

MAKING ADDRESS OF BULK COMPUTATIONAL WORK SPACE

AVAILABLE TO C MAIN PROGRAM

C

SL_ROUTINE FALLOC

C

C Before compilation, totalmem must be replaced with the

C following ntuuber: 37*(total ntun of nodes from all grids)

C + 3*(smn of all jdimc + s%uu of all kdimc).

C A slightly excessive overestimate would be

C 38*(total nu/n of nodes from all grids)

C ALLMEM(38), which appears here is replaced by

C ALLMEM(38*(+iI*jI*kI+i2*j2*k2+...)),

C the substitution being made by sed script falloc.sed.

C CMNADDRSS, i.e., co_unon address

C In this exs_mple, the grid sizes are: 92*82*50, 65*82*43, 35.164.39

COMMON /WORKMEM/ ALLMEM(38*(95*82*50+65*82*43+35*164*39))

CALL CMNADDRS (ALLMEM)

RETURN

END

int

float

APPENDIX E

WORK SPACE MEMORY ALLOCATOR

*pnuaxj [NUMBER_OF_GRIDS]

/* global declarations */

,*pnnaxk [NUMBER_OF_GRIDS]

, *pnnaxl [NUMBER_OF_GRIDS]

*p_x [NUMBER_OF_GRIDS]

,*p_y [NUMBER_OF_GRIDS]
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void

,,p_z[NUMBER_OF_GRIDS]

givmem (mesh_number,jmax,kmax,lmax)

int mesh_n_ber

,jmax
,kmax

,imax;

int maxdim = jmax * kmax * Imax;

p_maxj [meshmumber] = (int *) ,ord_allo¢ ( I );

p_maxk[meshmumber] = (int *) word_alloc ( i );

p_maxl[mesbmumber] = (int *) word_alloc ( i );

p_x[mesh_number] = (float *) word_alloc (maxdim);

p_y[mesh_number] = (float *) word_alloc (maxdim);

p_z[mesh_number] = (float *) word_alloc (maxdim);

float *word_alloc (numwords)

/* memory given to solver arrays */

int numwords;

extern float *p_allmem;

static int n_already_given = O;

int i;

i = n_already_iven;

n_already_iiven += numwords;

return (p_allmem + i);
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APPENDIX F

CPU TIMING TRIALS

Cpu Seconds per Minute

1 Processor 3 Processors
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33

32

33

32

30

32

33

33

36

33

34

34

34

35

35

35

36

34

35

34

40

32

31

35

31

37

34

38

4O

57

66

65

58

64

62

56

52

46

50

52

51

56

65

55

65

64

65

74

71

63

115

125

113

108

76

79

77

73

77

8O

72

79

79

77
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APPENDIX G

A COMPARISON OF INTERPOLATION ERRORS

RMS errors:

cub: 8.557E-3, 6.395E-3, 4.539E-3, 5.482E-3, 2.109E-2

lin: 1.400E-2, 9.904E-3, 9.054E-3, 1.139E-2, 3.468E-2

average abs(error):

cub: 3.520E-3, 2.503E-3, 2.118E-3, 2.485E-3, 9.077E-3

lin: 6.936E-3, 4._94E-3, 4.883E-3, 5.817E-3, 1.752E-2

stand dev abs(error):

cub: 7.800E-3, 5 884E-3, 4.014E-3, 4.887E-3, 1.904E-2

lin: 1.216E-2, 8.lillE-3, 7.625E-3, 9.793E-3, 2.993E-2

L-1 norm of errors:

cub: 57.617, 40._75, 34.670, 40.675, 148.556

lin: 113.520, 80.105, 79.911, 95.195, 286.834

L-2 norm of errors:

cub: 1.094, 0.81_;, 0.580, 0.701, 2.698

lin: 1.791, 1.267, 1.158, 1.457, 4.437

L-inf norm of errors

cub: 6.781E-2, 0.104, 3.921E-2, 5.700E-2, 0. t73

lin: 1.000E-1, 0.: 13, 6.256E-2, 1.062E-1, 0.261

L-1 norm of relative errors:

cub: 54.767, 49.739, 6879.075,832.340, .53.174

lin: 114.164,124.852, 10341.191, 1540.516, 108.532

L-2 norm of rela[ive errors:

cub: 0.969, 2.777, 545.013, 149.249, 0.933

lin: 1.782, 11.316, 8.53.034,217.192, 1.787

L-inf norm of relative errors:

cub: 7.652E-2, 1.252,230.220,105.581, 6.915E-2

lin: 9.610E-2, 6.741,342.255, 100.158, 0.126

average abs(rela:ive errors):

cub: 3.346E-3, 3.039E-3, 0.420, 5.086E-2, 3.249E-3

lin: 6.976E-3, 7._;29E-3, 0.631, 9.413E-2, 6.631E-3

stand dev abs(relative errors):

cub: 6.802E-3, 2.149E-2, 4.239, 1.165, 6.533E-3

lin: 1.206E-2, 8.1313E-2, 6.638, 1.695, 1.230E-2
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